Технология OLED |
Давно подмечено, что в области OLED никакие оптимистичные прогнозы не оправдываются. Одновременно с выпуском XEL-1 в декабре 2007 года корпорация Samsung пообещала к концу 2008 года наладить серийный выпуск 14-дюймовых панелей, но даже сейчас об этом не слышно. А прототипы больших OLED-дисплеев с диагональю аж до 40 дюймов та же Samsung демонстрировала журналистам еще в 2005 году, но воз и ныне там. Toshiba же собиралась представить свой первый OLED-телевизор в 2009 году, однако позже перенесла срок на 2011 год. И дело не только в себестоимости производства, но и в технологических проблемах, не решенных по сию пору.
Проблемы эти возникают на двух уровнях: в технологии изготовления органических светодиодов (Organic Light-Emmitting Diode, OLED) и в разработке на их основе реальных экранов. Чтобы разобраться в камнях преткновения, надо, прежде всего, понять: а что, собственно, OLED-технология нам обещает?
В начале 1990-х в журнале Elecronics была опубликована статья про освоение промышленного выпуска долгожданных синих светодиодов. Сделала это в 1993 году японская компания Nichia благодаря своему сотруднику Судзи Накамуре. Долгожданными они были потому, что красные, зеленые и желтые к тому времени уже выпускались в промышленных масштабах, а коротковолновая часть видимого спектра никак не поддавалась. Тогда казалось, что еще немного - и мы увидим светодиодные телевизоры с прекрасной цветопередачей и плоские (напомним, что тогда ни о каких ЖК-панелях соответствующих размеров, тем более полноцветных, еще и речи не шло). Потому что светодиод - идеальный компонент для построения цветовой триады пикселей, абсолютно черный в выключенном состоянии, могущий обеспечить большую яркость во включенном состоянии и к тому же обладающий чистой спектральной характеристикой, далеко обгоняющей по насыщенности оттенка любые фильтры.
Но действительность оказалась куда прозаичнее. Во-первых, обычные светодиоды невозможно вырастить на единой подложке, хотя бы потому, что для разных цветов используются разные химические соединения. Во-вторых, даже если удастся их как-то объединить в матрицу, управлять ею будет очень трудно из-за того, что твердотельные светодиоды требуют довольно больших токов, в несколько миллиампер на каждый субпиксель, отчего даже небольшая матрица такого рода будет потреблять десятки и сотни ватт. Недаром в технологиях больших экранов для общественных мест предпочитают использовать капризную, но более простую в производстве и требующую относительно небольших токов плазму.
Выход нашелся в электролюминесценции в органических материалах, на основе которых сотрудники фирмы Kodak Чин Тенг и Стив Ван Слайк в 1987 году разработали первую разновидность OLED-технологии. Схематически устройство цветовой триады пикселов в OLED-дисплее показано на рисунке слева. Пропуская ток между катодом и анодом, мы заставляем светодиод излучать, причем достаточное для свечения напряжение составляет всего 2,5 В, а при 4 вольтах яркость OLED достигает 1000 кд/м2 (что раза в два-три больше, чем у «обычного монитора»). Правда, для этого требуются довольно мощные токовые усилители-драйверы для каждого пикселя, ибо необходимый ток составляет до полумиллиампера.
При большом желании от OLED-ячейки можно получить яркость и в 100 тысяч кд/м2, то есть проблем с динамическим диапазоном теоретически здесь нет, но на практике, конечно, все упирается в потребление и в допустимую подводимую мощность - это не только токовые драйверы, ведь катоды делаются напылением из тонкой пленки алюминия с добавками щелочных металлов, а аноды - вообще из прозрачных проводящих материалов (типа оксидов индий-олово), и их высокое сопротивление тоже ограничивает величину допустимого тока. То есть потенциальные преимущества OLED-дисплеев, в первую очередь высокую контрастность, реализовать непросто, и дальше мы увидим, к каким ухищрениям приходится прибегать разработчикам.
Единственное преимущество OLED, заработавшее с самого начала: быстродействие ячеек, которое уже в первых лабораторных образцах достигало микросекунды. Правда, схемы управления снижают быстродействие до 10–100 мкс, но это все равно на порядок лучше, чем у самых быстродействующих ЖК-ячеек.
Профессор Ричард Френд вместе с группой химиков лаборатории Кембриджского университета в 1989 году разработал еще один вариант этой - Polymer Organic технологии под названием PLED (точнее, POLED). Здесь вместо простых органических соединений используются полимеры. Будучи более простой в производстве, PLED обладает меньшей эффективностью светоизлучения и худшими спектральными характеристиками, а долговечность ячеек у нее ниже, чем у «обычной» OLED.
Долговечность и представляет собой первую и одну из основных трудностей для разработчиков. Органика есть органика - она медленно, но неотвратимо деградирует, взаимодействуя с кислородом воздуха, водяными парами и компаундами, которые употребляются для герметизации. Наименьшей долговечностью отличаются синие субпикселы - считается, что их срок службы не превышает в среднем 10 тысяч часов, что приемлемо для мобильных телефонов, но недостаточно для ноутбуков и телевизоров.
Другая проблема - цветопередача. Это только в теории светодиоды обладают идеальными спектральными характеристиками, на самом же деле обеспечение нужной цветовой характеристики требует введения в органический материал добавок, которые лишь ухудшают стабильность. Поэтому многие разработчики склоняются к знакомой схеме: собственно матрица составляется из светодиодов белого свечения (для них достигнута долговечность порядка 20 тысяч часов), а цвета формируются обычными фильтрами. В пределе разница между ЖК-мониторами со светодиодной подсветкой и такими OLED-дисплеями, как видите, только в способе управления яркостью: в ЖК регулируют прозрачность фильтра, а OLED - яркость подсветки (что и в ЖК с динамической подсветкой широко используется). И еще неизвестно, что выгоднее, так как ЖК-ячейка управляется не током, а напряжением и в принципе требует энергию лишь для перезаряда соответствующей емкости (отчего, кстати, и быстродействие ее ниже). Поэтому для управления яркостью ЖК-ячейки (без учета, конечно, управления динамической LED-подсветкой, если она используется) не требуется манипулировать значительными токами.
А в OLED управление субпикселами, как мы говорили, требует достаточно мощных токовых драйверов. Можно привести такую цифру: для поддержки всего-навсего 128 пикселей в строке нагрузочная способность формирователя строк должна достигать почти 50 мА (при напряжении питания формирователя около 5 В); можете подсчитать, какую единовременную мощность потребует нормальная матрица для того же телевизора. Для преодоления этих ограничений придумали довольно сложный мультистрочный способ управления матрицей, когда в каждый момент времени горит только одна строка либо некий прямоугольный фрагмент экрана (и притом частично - полное многоцветное изображение «проявляется» за несколько циклов работы). При этом уровни токов для каждого пикселя, возможно, придется настраивать индивидуально, чтобы обеспечить равномерную яркость по всей площади экрана, а потом - по мере старения ячеек - еще и подстраивать дополнительно, поэтому строковые драйверы обычно делаются программируемыми (что еще больше усложняет конструкцию, а значит, и производство).
В обычной пассивной OLED-матрице, представляющей собой массив ячеек между перпендикулярными сетками анодов и катодов, используется знакомая по плазме схема управления яркостью через скважность, то есть через регулировку времени, в течение которого ячейка «горит» за один цикл работы. В практических конструкциях таким способом было трудно обеспечить достаточный динамический диапазон - мешает инерционность линий управления, для преодоления которой приходится вводить специальный этап «предзаряда», то есть быстрого доведения напряжения на ячейке до необходимой величины через заранее запасенную на конденсаторе энергию. Пассивные OLED-матрицы обычно отображают 262 тысяч цветов, а применяющиеся в реальных устройствах - еще меньше.
Для создания нормальных многоцветных экранов пришлось, увы, поступиться принципами и объединить органический материал с обыкновенной матрицей тонкопленочных транзисторов (TFT) на основе поликремния, хорошо знакомой по ЖК-мониторам. А соединение органики с кремнием только удорожает производство. Правда, такой AMOLED-дисплей (Active Matrix OLED) имеет все преимущества, приписываемые OLED в сравнении с ЖК - и лучшую цветопередачу, и повышенную яркость-контрастность, и высокое быстродействие, сравнимое с быстродействием ЭЛТ, и минимальную толщину, и даже, как ни странно, более низкое энергопотребление. Но практические достижения этой технологии в ее современном состоянии мы уже видели: экраны 2,2” для мобильников - да, телевизоры и мониторы мы пока встречаем, увы, только на выставках.
Одним из перспективных направлений считается разработка транзисторов на основе органических материалов. Это позволило бы изготавливать OLED с активной матрицей в едином технологическом процессе, но пока мешает как минимум одно обстоятельство: из-за малой подвижности носителей заряда в органических полупроводниках быстродействие схем на их основе слишком мало. Если бы кому-нибудь удалось создать быстрый транзистор на органике, это сильно ускорило бы вывод OLED-технологий из ступора, но пока все подобные разработки существуют лишь в виде пресс-релизов исследовательских лабораторий.
Лично мне представляется весьма перспективным совсем иное применение OLED-технологий - для производства источников света. Не исключено, что мы их увидим у себя дома даже раньше OLED-телевизоров. OLED сравнимы по светоотдаче на каждый затраченный ватт с люминесцентными лампами, но лишены их недостатков, таких как сложные схемы управления, большое время «разгона» при включении, ограниченное число оттенков, потребность в хрупких вакуумных колбах, да еще и наполненных всякими вредными парами типа ртутных.
Разработчикам, конечно, еще пахать и пахать. Срок службы в 30 тысяч часов для белых плоских светильников, достигнутый в лабораториях Osram, хоть и превышает срок службы люминесцентных ламп (6–20 тысяч часов, в зависимости режима использования), но не позволяет использовать потенциал технологии полностью. Ведь OLED, как мы знаем, можно наносить методом печати, то есть на любую плоскую поверхность (потолки, обои и пр.), при этом оттенок можно выбирать по собственному желанию. Но светящиеся обои потребуют сроков службы порядка десятилетий (30 тысяч часов - это чуть больше трех лет), да и о регулировании оттенков еще только мечтают. Впрочем, вполне возможно, что «строительное» применение OLED окажется даже более значимым, чем для дисплеев. Про светящиеся стены в фантастических романах читали? Вот это оно и есть.
<< Предыдущая В начало рубрики Следующая >>